Archive for the ‘Exercise’ Category

Last year around this time, I was working out with one of my old strength coaches from Florida State and he showed me his newest ab circuit: Ten Minute Abs. Three great things about this workout: 1) it’s very flexible and customizable, 2) it’s an ab killer, and 3) it’s only 10 minutes!

Basically, you do ab exercises for 10 minutes straight. Every 30 seconds, you switch to a different exercise, so you’re doing 20 different exercises. I’ve included some of my favorites below, so you can pick from the list below or come up with your own! I always love to start with a plank circuit, which I’ve separated into the top 9 exercises below, and then pick from the rest of the list for the second half of the workout.

Have fun with it, and enjoy your new abs 🙂




-Side Plank (Right)

-Side Plank (Left)

-Leg Lift Plank

-Side Leg Lift Plank (Right)

-Side Leg Lift Plank (Left)

-Plank with Alt. Hip Dips

-Plank with Hip Dip (Right)

-Plank with Hip Dip (Left)


-Leg Lifts

-Right Side Crunch

-Left Side Crunch

-Left Single Leg V-up

-Right Single Leg V-up

-Straight Leg Russian Twist

-Scissor Kicks


-Alternating Toe Touches

-Alternating Supermans

-Reverse Crunch




-Straight Leg Situps



-Toe Touches

-6 inch Hold

-Right Elbow to Left Knee Crunch

-Left Elbow to Right Knee Crunch

For those of you out there who recognize the benefits of sprinting as well as circuit training, this workout is for you! This is a fast-paced sprint circuit that can be tailored to your fitness level simply by how many times you go through it. Beginners or advanced athletes on an active recovery day can run through it 1-3 times, while advanced athletes can get a great workout on a heavy day by doing this 6+ times.

So here it is:

50 yard sprint

10 pushups + 10 mountain climbers + 10 frog jumps

50 yard sprint

20 bodyweight squats + 10 reverse crunches + 20 lunge jumps

Rest 2 minutes, repeat!

Remember, today is the only day that matters. It’s not what you did yesterday, or what you plan to do tomorrow that counts. What will you do with your TODAY?

TODAY I will make a choice



You’ve heard and seen the quote before, and I know it’s a bit cliche. But it’s true. Start taking advantage of your energy and fitness and work your body into your own personal artwork, an expression of your hard work and dedication to yourself. Today, I want to give you all some insight as to my current training and some ways that you can adapt my workouts into your own.

I am currently lifting 3 days a week, with one day of yoga, two days of speed endurance, and one day of “long” endurance. So it usually ends up being lifting Monday, Wednesday, and Friday, stadiums and yoga on Tuesdays, a sprint workout on Thursdays, and a long run on Saturdays. For my lifting days, I do a lot of lifts that most gyms don’t accommodate (i.e., snatch, cleans, push press, etc). So what I would suggest, if your gym doesn’t allow power lifting, is to take one major lift each day and work other machine, body weight, or dumbbell weights around it. I’ve made an example lifting routine that will hopefully help y’all develop your own!

Day 1:

Back Squat day – sets of 8, 5, 3, 2, 4, 3, 1. (going up in weight as you go down in reps).
Then do ancillary lifts in sets of 10, 8, 6 (going up in weight as you go down in reps):
-Weighted lunges
-Leg press
-Shoulder press (with dumbbells)
Then do body weight exercises for 3 sets of 8:
-pull ups
-single leg squat
-hanging abs

Day 2:

Bench day – sets of 5, 3, 1, 5, 5, 5, 5, 5 (start with a comfortable weight for 5, increase close to your max for 1, then choose weight between your first set of 5 and 3 to do the five sets of 5).
Ancillary lifts:
-Incline dumbbell bench
-Lat pull downs
-Tricep Extension
Body Weight:
-push ups
-med ball abs

Day 3:

Front squat day – 4 sets of 3 reps
Ancillary Lifts:
-Step ups with weight
-Jump squats with dumbbells
-military shoulder press
Body Weight:
-Kettle Bell squats
-Burpees (3 sets of 20)
-Planks (front, side, side, one minute each)

I get a lot of questions about the kind of cardio that I do. And while I have posted before about the fat burning benefits of low intensity cardio, there are also lots of benefits to high intensity cardio as well. These cardio workouts are adapted from my track and field career and will increase your speed endurance, acceleration, and general conditioning, so give one (or all!) of them a try!

“7 Arounds” – on a 400m track, sprint 100m and jog back 50m. From that point, sprint 100m again, then jog back 50m. Continue until you get back to your starting point, which should have been 7 100m sprints. Do 2-3 sets of these with 10 minutes rest between sets.

X’s – on the infield of a football, track, or soccer field, sprint across the diagonal of the field, jog along the end, and sprint back along the other diagonal, and jog back to your starting point. Do 2-3 sets of 3 of these with 6 minutes rest between sets and 4 minutes rest between reps.

Ladders – sprint 3x50m (rest = 1.5 minutes between 50s, 2 minutes before 100s), 2x100m (rest = 2 minutes between 100s, 3 minutes before 150s), 1x150m (rest = 3.5 minutes), 1x200m (rest = 5 minutes). Depending on your level of fitness, go back down the ladder.

Up-Backs – sprint 80m, rest 1.5 minutes, sprint back 80m, rest 5 minutes. Do this 5 times.

Shuttles – sprint 10m, do 5 pushups, sprint back. Sprint 20m, do 10 situps, sprint back. Sprint 30m, do 15 prisoner squats, sprint back. Sprint 40m, do 20 crunches, sprint back. Sprint 50m, do 30 scissor kicks, sprint back. Repeat 2-4 times with 10 minutes rest between sets.

Stadiums (or stairs) – sprint up steps, run to next set of steps, run down, sprint up next set of steps going across one whole side of a stadium. Repeat for 2 sets of 3 times with 5 minutes in between each rep and 10 minutes between the two sets.

Here’s a workout challenge for all my fitness freaks out there! Feel free to modify based on your fitness level 🙂

Here is another ESF workout for you! This one is a circuit training exercise that is centered around lunges, but works in abs and arms stations as well. Guaranteed to make your glutes, hammys, and quads sore the next day! To make this workout harder, you can add weight to your lunges using either dumbbells or barbell of desired weight, and to your ab workouts by using a medicine ball.

Remember: For lunges, you should never let your front knee extend over your ankle and bend only until both knees are at 90 degrees! Otherwise you risk injury, especially if you are adding weight.

Enjoy the The ESF Lunge Workout 🙂 and let me know if you have questions!

Just Google “fat burning zone” and the handy dandy search engine will pull up enough conflicting opinions to confuse a rocket scientist. There has been much debate as to whether more fat loss occurs at low intensity or high intensity training. Unfortunately, many people and fitness companies (and even personal trainers!) cite 24 Hour Fitness and the like as their “sources” of information, which are often opinions of their instructors and not necessarily based on real science literature. Such sources seem to think that since you burn more calories in general at higher intensities that you will then lose more weight. This is technically true, if you don’t care what kind of weight you lose. The fact is, most people would prefer to burn fat rather than burn muscle. Why? Because fat is unhealthy and unsightly, whereas muscle not only adds to our strength, but also requires much more energy to function during day to day activities. Which means that even when you’re not working out, your muscles are burning through calories, which is great for weight loss! Fat, on the other hand, is “in storage”, so think of it as your reserve fuel. Your body doesn’t want to burn through its reserve fuel if it doesn’t have to (the body is operating on survival instincts even though most of us don’t have to worry about whether or not we are going to get our next meal!), so you have to force your body to use that fat. It takes longer, lower intensity workouts to makes your body stick to fat burning. That’s why at the gym, you may notice that the cardio machines (i.e. elipticals and bikes) that have the heart rate monitors will give you a fat burning range that is much lower than cardio training range. When you’re working out and your body needs energy, it pulls it from wherever it can get it, whether that is carbs, fat, or muscle. Obviously, you want to maintain and/or build your muscle mass, keep your carbs for energy, and burn off your fat, right?? In order to do this, it has been scientifically shown that you should stay at lower levels of cardio intensity to target fat metabolism.

Be warned: what is about to follow is relatively lengthy and has direct summaries from scientific literature. If you don’t want to read all that, you can skip what’s in italics and go right to what is in bold, which is my plain-English summary of the “scienc-ese” summary. You can trust my interpretation because I have been reading scientific papers since I started my degrees (B.S. and M.S. both in Biology) years ago, and also because I am currently a Department of Defense contractor working in a Navy Physiology Lab! So I know my science, but feel free to read as much or as little of either my interpretation or the scientific abstract as you want.


1. Carey, DG. Quantifying differences in the “fat burning” zone and the aerobic zone: implications for training. Journal of Strength and Conditioning Research. 23(7): 2090-2095, 2009.

The primary objective of this study was to examine the relationship of the “fat burning” and aerobic zones. Subjects consisted of 36 relatively fit runners (20 male, 16 female) who completed a maximal exercise test to exhaustion on a motor-driven treadmill. The lower and upper limit of the “fat burning” zone was visually assessed by examining each individual graph. Maximal fat oxidation (MFO) was determined to be that point during the test at which fat metabolism in fat calories per minute peaked. The lower limit of the aerobic zone was assessed as 50% of heart rate reserve, whereas the upper limit was set at anaerobic threshold. Although the lower and upper limits of the “fat burning” zone (67.6-87.1% maximal heart rate) were significantly lower (p < 0.05) than their counterparts in the aerobic zone (58.9-76.2%), the considerable overlap of the 2 zones would indicate that training for fat oxidation and training for aerobic fitness are not mutually exclusive and may be accomplished with the same training program. Furthermore, it was determined that this training program could simultaneously meet the requirements of the American College of Sports Medicine for both aerobic fitness and weight control. Maximal fat oxidation occurred at 54.2% maximal oxygen uptake (VO2max). However, the great variability in response between individuals would preclude the prediction of both the “fat burning” zone and MFO, indicating a need for measurement in the laboratory. If laboratory testing is not possible, the practitioner or subject can be reasonably confident MFO lies between 60.2% and 80.0% of the maximal heart rate.

So basically this study showed that while the upper and lower limits of fat loss and aerobic capacity do overlap, the maximal fat loss is at 50% of your VO2max! If you’ve ever been tested for your VO2max, you’ll know that 50% is not very intense (I have done the test here at the Navy Physiology Laboratory where I work). In fact, it’s estimated to be between only 60 and 80% of your maximal heart rate!


 2. Després, J.-P. and LAMARCHE, B. (1994), Low-intensity endurance exercise training, plasma lipoproteins and the      risk of coronary heart disease. Journal of Internal Medicine, 236: 7–22.

Physically active individuals generally show a reduced risk of coronary heart disease (CHD) compared to the sedentary population. However, whether such reduction in CHD risk mainly results from the concomitant improvement in cardiorespiratory fitness or from the alterations in CHD risk factors has yet to be clearly established. Furthermore, there is still some controversy regarding the potential associations between endurance training-induced changes in metabolic variables considered as CHD risk factors (plasma glucose, insulin and lipoprotein levels) and the magnitude of improvement in cardiorespiratory fitness. From the results of several studies discussed in this article, it is proposed that prolonged endurance exercise of low intensity (˜ 50% V̊o2max), performed on an almost daily basis, seems to significantly improve metabolic variables considered as CHD risk factors through mechanisms that are likely to be independent from the training-related changes in cardiorespiratory fitness. The notion of ‘metabolic fitness’ is introduced and can be defined as the state of a set of metabolic variables relevant to CHD risk and affected by the level of physical activity. Evidence available suggests that these metabolic variables are not closely related to the adaptation of cardio-respiratory fitness in response to exercise training. The concept of metabolic fitness has several implications for the prescription of exercise and for the primary and secondary prevention of CHD. Indeed, emphasis should not be placed on aiming at increasing V̊o2max through high-intensity exercise, but rather on producing a substantial increase in daily energy expenditure that will eventually lead to weight loss and related improvements in carbohydrate and lipid metabolism. Therefore, from a practical standpoint, although a 1 h daily walk may not have marked effects on cardiorespiratory fitness, it probably represents an exercise prescription that is likely to substantially improve ‘metabolic fitness’, thereby reducing the risk of CHD.

This one is slightly different because it is looking primarily at combatting coronary heart disease. However, they do show that metabolic fitness, defined as “substantial increase in daily energy expenditure that will eventually lead to weight loss and related improvements in carbohydrate and lipid (lipids = fats) metabolism”, is achieved at 50% of the VO2max as well. So this confirms what the other study found as well in terms of the maximal fat metabolism threshold.


3. Achten, J., Gleeson M., and Jeukendrup A.E. Determination of the exercise intensity that elicits maximal fat oxidation. Medicine and Science in Sports Exercise, Vol. 34, No. 1, 2002, pp. 92-97.

Purpose: The aim of this study was to develop a test protocol to determine the exercise intensity at which fat oxidation rate is maximal (Fatmax).

Method: Eighteen moderately trained cyclists performed a graded exercise test to exhaustion, with 5-min stages and 35-W increments (GE 351 5). In addition, four to six continuous prolonged exercise tests (CE) at constant work rates, corresponding to the work rates of the GE test, were performed on separate days. The duration of each test was chosen so that all trials would result in an equal energy expenditure. Seven other subjects performed three different GE tests to exhaustion. The test protocols differed in stage duration and in increment size. Fat oxidation was measured using indirect calorimetry.

Results: No significant differences were found in Fatmax determined with the GE35 /5, the average fat oxidation of the CE tests, or fat oxidation measured during the first 5 min of the CE tests (56 + 3, 64 + 3, 58 + 3%VO2max respectively). Results of the GE35 65 protocol were used to construct an exercise intensity versus fat oxidation curve for each individual. Fatmax was equivalent to 64 + 4%VO2max and 74 ± 3%HRmax. The Fatmax zone (range of intensities with fat oxidation rates within 10% of the peak rate) was located between 55 ± 3 and 72 ± 4%VO2max. The contribution of fat oxidation to energy expenditure became negligible above 89 ± 3%VO2max (92 + 1%HRmax). When stage duration was reduced from 5 to 3 min or when increment size was reduced from 35 to 20W, no significant differences were found in Fatmax, Fatmin, or the Fatmax zone. Conclusion: It is concluded that a protocol with 3-min stages and 35-W increments in work rate can be used to determine Fatmax- Fat oxidation rates are high over a large range of intensities; however, at exercise intensities above Fatmax, fat oxidation rates drop markedly.

This study shows slightly higher values of the maximum fat utilization, though their exercise time is much shorter than other studies. They found a maximal fat burning zone between 55 and 72% of VO2max (with a maximum at 64% VO2max or 74% maximal heart rate). They also showed that fat contributes negligible amounts of energy over 89% VO2max or 92% maximal heart rate, which is often where high intensity workouts keep you.


4. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology. 265(3):E380-E391.

Stable isotope tracers and indirect calorimetry were used to evaluate the regulation of endogenous fat and glucose metabolism in relation to exercise intensity and duration. Five trained subjects were studied during exercise intensities of 25, 65, and 85% of maximal oxygen consumption (VO2max). Plasma glucose tissue uptake and muscle glycogen oxidation increased in relation to exercise intensity. In contrast, peripheral lipolysis was stimulated maximally at the lowest exercise intensity, and fatty acid release into plasma decreased with increasing exercise intensity. Muscle triglyceride lipolysis was stimulated only at higher intensities. During 2 h of exercise at 65% VO2max plasma-derived substrate oxidation progressively increased over time, whereas muscle glycogen and triglyceride oxidation decreased. In recovery from high-intensity exercise, although the rate of lipolysis immediately decreased, the rate of release of fatty acids into plasma increased, indicating release of fatty acids from previously hydrolyzed triglycerides. We conclude that, whereas carbohydrate availability is regulated directly in relation to exercise intensity, the regulation of lipid metabolism seems to be more complex.

This one shows that as you increase intensity, more muscle breakdown occurs. They also found that utilization of fatty acids for energy decreased as intensity increased, plus fatty acids continued to be used at a higher rate even after exercise was complete! That’s good news, huh?


As you can see, there isn’t much debate as to whether or not there is a fat burning zone, and that this zone is at relatively low intensities. All you have to do is read the back of a protein shake like Muscle Milk to see that the whole point of its existence is to repair muscles after high intensity training like weightlifting. If your body didn’t break down muscle during high intensity workouts and continue to do so even after the workout, there would be no need for these formulas! So what if you want to not only burn fat but also improve your cardiovascular fitness? Well, as Article #1 states, they are not mutually exclusive. In order to maintain a good balance between cardio training and fat burning, it may be beneficial for you to have a couple days that you do long cardio workouts at lower intensity to burn fat, while other days are dedicated to high intensity cardio training for shorter periods of time. As one of the articles pointed out (#2), even walking was sufficient to reach a fat burning heart rate! This means that even if you can’t make it to a gym every day of the week, you can still do something to keep your metabolism up and running. So no excuses! Now that you have all the info, get to work on building your better body in 2012!

This workout plan is an example of one of my weekly workouts. Obviously, to keep from getting bored, I vary my workouts a bit each week so I’ll be posting a few more in the future so you can mix up your workouts, too!

Some of the exercises may not be intuitive, so let me know if you have questions! I will try to keep posting abs videos since those tend to be the most confusing.


Workout of the Week

Posted: December 18, 2011 in Exercise

I get asked for examples of workouts so I’m going to try to post my favorite workout each week. And soon I should have an example of a weekly workout plan as well. But the other day I did a great workout that I thought I would share with you!

This was an arms, back, and abs circuit, so basically a total upper body workout. I like to superset my ab workouts between my lifts or other exercises. So for my weights, I started at 10 reps and decreased while I started at 10 reps for my ab workouts and increased. I did 3 sets of this, so it looked like this:

Set 1

  • Lifts: 10 reps
  • Abs: 10 reps

Set 2

  • Lifts: 8 reps
  • Abs: 12 reps

Set 3

  • Lifts: 6 reps
  • Abs: 15 reps

After each lift, I did an ab exercise and did this like a circuit. You may not be able to do this in your gym so you can do one at a time if you have to. But here is what I did:

  1. Declined Pushups
  2. Cross Legged Sit-Ups
  3. Triceps –> Tricep pull-downs + Overhead tricep extension
  4. Oblique Sit-Ups on stability or Basu ball
  5. Bicep Curls
  6. V-Up Crunch
  7. Bench Press
  8. Hanging Knee Raises
  9. Shoulder Flies –> side and front
  10. Hanging Pikes
  11. Lat Pull Downs
  12. Sit-Up and Twist (elbows to ankles)

So that’s one set. Then you repeat three times as I explained above (i.e., Exercise/Abs: Set 1: 10/10, Set 2: 8/12, Set 3: 6/15).

If you try it, let me know how you like it! And let  me know if you have any questions about any of the exercises and I’ll try to explain them.

Good luck!

For those of you who don’t know, I am currently a laboratory technician in the Physiology Lab at the Navy Experimental Diving Unit in Panama City. Some of my recent research has involved looking at the effects and timeline of detrainment, and I came across some interesting literature that thought I would share. Detrainment is defined as the partial or complete loss of training-induced anatomical, physiological, and performance adaptations as a result of reduction or cessation of training (Mujika and Padilla 2000).

Translation: detrainment is the process of “getting out of shape”, also known as “if you don’t use it, you lose it” syndrome.

Obviously, we want to combat detrainment because we don’t want to backslide. But as we all know, sometimes life gets in the way of us working out. So naturally, we have the following questions:

1)    How fast will I detrain?

2)    How can I keep this from happening?

There’s no easy answer to question #1. Studies have used a detrainment period ranging from two to sixteen weeks and begin reporting changes at seven to fifteen days.  This seems to tell us that detrainment does not typically occur in less than two weeks, but unfortunately there are no known studies that have specifically researched the minimum time to detrainment.

Scienc-y stuff:

–       In a study using rats, physical capacity and myocardial performance reverted to pre-trained conditions after only two weeks of detraining (Bocalini et al 2010). 

–       A study involving young basketball players showed no significant difference in explosive strength indicators after four, eight, twelve, or sixteen weeks of detrainment following a ten-week plyometric training program (Santos and Janeira 2011). 

–       The Dallas Bedrest and Training Study of 1966 (Saltin et al 1968) found that detrainment caused a significant decrease in the maximum O2 uptake (VO2max), cardiac output, heart rate, and stroke volume during exercise.

–       A decrease in aerobic capacity in adults was seen after 15 days of bed rest (Stuart et al 2007). 

–       Greenleaf et al (1997) found that peak oxygen uptake decreased by day seven of the study.

Now, on to question #2. Obviously, daily exercise is going to keep detrainment from happening (Lee et al 2009, Lee et al 2007). But one study actually found that stretching also combats detrainment (Kasahara et al 2010)! So if you can’t get a workout in for a few days at a time, try doing some stretches to keep from losing all that hard work you put in at the gym! Try yoga at home or check out these stretch-at-your-desk videos from Mayo clinic to help maintain your level of fitness even when you can’t actively work out.